
28 January 1978

Dear Mr. Manger,

In order to soothe my bad conscience a little, I examined your loudspeakers
theoretically last weekend. I was surprised to find that the radiation principle
chosen by you gives a radiation time history that corresponds to the time
history of the current (at least in the idealisation I examined); i.e. transient
oscillations and other disturbing effects do not occur. If I interpret the
equations correctly, it seems feasible that a plate (membrane) with a stiffness
decreasing towards the edge (thickness variation), leads to a slightly
improved radiation efficiency.

With many thanks for your Christmas surprise,
Yours,
(M.  Heckl)



Radiation from a very pliable large plate with circular excitation

1. The problem
We consider a very large plate which is excited along a ring. The excitation
force is uniform along the ring, so that the problem can be regarded as
radially symmetric.

The aim is to determine the sound radiation of such a configuration, with the
time history of the sound pressure being of particular interest.

2. Mathematical model
In order to keep the mathematical effort low, the following assumptions are
made in the calculations:
(a) The plate is large enough and strongly enough damped that the bending
waves excited by the ring do not get reflected by any edge that may be
present. (Because of the high damping of the material, this condition should
be satisfied at least above a few hundred Hertz.)
(b) The motion of the plate can be described by the bending wave equation;
i.e. membrane tensions (which would lead to nonlinearities) must be absent.
(In the present configuration, this condition is probably satisfied.)
(c) The bending wavelength of the plate should be at least 25 kHz below the
sound wavelength in air. (Since the material is very pliable, one can assume
that the bending wavelength is below the sound wavelength by as much as
about 50 kHz.)
(d) In the frequency range of interest, i.e. above about 300 Hz, the radiation
loading by the surrounding air can be neglected. (Since the weight of the
oscillating foil is high compared with that of loudspeaker membranes, this
condition, too, should be satisfied.)

3. Calculation of the sound pressure
3.1. Basic equations
The problem is solved if solutions can be found to the sound wave equation
and the bending wave equation with ring-shaped excitation, under the
assumptions given above. It is known from literature [e.g. Heckl, Acustica 9
(1959), p. 371] that the sound pressure radiated by a very large plane plate is
given for the radially symmetric case by the formula
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The following notation has been used:
p r z t( , , ) = sound pressure at position r z,  at time t
r  = perpendicular distance from the symmetry axis which passes

   through the centre of the ring
z  = distance from the plate
t  = time
ω  = integration variable (angular frequency)
J0 (..)  = Bessel function of order zero

j  = − 1
kr  = integration variable (wave number)

k0  = 
ω
c0

c0  = propagation speed of sound waves in air
p(..)  = wave number spectrum of the pressure

If the plate oscillates with the radially symmetric velocity distribution v r t( , ) ,
then
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ρ0  is the density of the air. If the plate is excited by a radial pressure
distribution of the form p r tA ( , ) , then
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The following notation has been used:
B  = bending stiffness of the plate
m' '  = mass per unit area of the plate

kB  = ω 24 m B' '/  = wave number of free bending waves

In the present case of a ring-shaped excitation, pA  is given by
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If equation (7) is inserted into (4) and the resulting equation inserted into (1),
one obtains
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Because of the assumption (b), we always have k kr B<<  in the far field, i.e.
for k kr0 > ; therefore
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3.2. Evaluation of equation (9)
The integral over kr  can be obtained from a comparison with the calculation
of the radiation from a small piston membrane, and one can show that
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Strictly speaking, this formula applies only if a  is less than half a sound
wavelength; along the symmetry axis, equation (10) also holds for larger
values of a . Substitution of (10) into (9) gives
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This surprisingly simple result says that the time history of the sound pressure
near the symmetry axis corresponds exactly to the time history of the force
acting on the plate and hence to the time history of the current in the moving
coil. The time-lag due to sound wave propagation in the air is expressed by
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4. Conclusion
It can be shown theoretically, with the above simplifying assumptions, that the
sound pressure radiated by a large, very pliable, damped plate along the
symmetry axis, has a time history that corresponds to that of the excitation
force in the moving coil (which has to be very light) and hence to the time
history of the coil current. Therefore, time histories of currents with sudden
changes (square wave) are reproduced correctly in the radiated sound
pressure.

The time history of the sound pressure at positions off the symmetry axis can
be obtained from the above equations only after lengthy numerical
evaluations. Presumably, the gradual decay of the function J k ar0 ( )  for
increasing arguments causes a "rounding-off of the corners in the time
history" for small distances from the symmetry axis, and a completely
different time history for points further away.


